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Synopsis 

Chronic Obstructive Pulmonary Disease (COPD) affects more than 64 million 

people globally and is primarily caused by cigarette smoke (CS) exposure. It is the third 

leading cause of morbidity and mortality worldwide and imposes significant 

socioeconomic burden worldwide. COPD is a chronic lung disease characterised by 

chronic pulmonary inflammation, airway remodelling and emphysema. These 

pathologies consequently culminate in progressive lung function decline and airflow 

limitation. Current therapies for the management of COPD are largely ineffective. They 

provided symptomatic relief to patients and do not target the underlying causal factors 

of COPD. Hence, there is a lack of effective treatments and an urgent need for research 

into the identification and development of therapeutic strategies in treating COPD.  

The lack of effective treatments is due to the poor understanding of 

immunological processes and mechanisms that underpin the pathogenesis of COPD. 

Our laboratory has recently established a murine experimental model of COPD by 

exposing mice to nose-only inhalation of tightly regulated dose of CS. Importantly, our 

CS-induced model of COPD recapitulates the hallmark features of human disease in a 

relatively short period of time. Thus, this allows us to investigate and examine the 

immunological processes and mechanisms that underpin the pathogenesis of COPD. 

The aims of the studies described in this thesis were to identify and elucidate 

immunological processes that underpin the pathogenesis of COPD. 

The first study identified a novel role for tumour necrosis factor-related 

apoptosis-inducing ligand (TRAIL) in promoting CS-induced COPD. TRAIL and its 

receptors were increased by CS exposure in mice and in lung samples from human 

COPD patients. TRAIL-deficient mice or wild-type (WT) mice treated with neutralising 
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TRAIL monoclonal antibodies had significantly reduced CS-induced pulmonary 

inflammation, expression of pro-inflammatory mediators, emphysema-like alveolar 

enlargement and improved lung function. 

The second study investigated the role of Toll-like receptor (TLR)2 and TLR4 in 

CS-induced pathogenesis of COPD. CS-induced pulmonary inflammation was largely 

unaltered in the absence of TLR2 or TLR4. TLR2-deficient mice had CS-induced 

emphysema-like alveolar enlargement, apoptosis and impaired lung function compared 

to normal air-exposed mice that was equivalent to CS-exposed WT mice, whilst small 

airway remodelling was not altered. By contrast, TLR4-deficient mice had reduced CS-

induced emphysema-like alveolar enlargement, apoptosis and impaired lung function 

compared to WT mice. Interestingly, CS-induced small airway fibrosis, characterised by 

increased collagen deposition around small airways, was ablated in TLR4-deficient 

mice. 

The third study identified a previously unrecognised role for TLR7 in the 

pathogenesis of COPD. In the absence of TLR7, CS-induced pulmonary inflammation 

was not altered compared to CS-exposed WT controls. CS-induced small airway 

epithelial cell thickening was reduced whilst collagen deposition increased in the 

absence of TLR7. Importantly, CS-induced emphysema-like alveolar enlargement and 

apoptosis were reduced in TLR7-deficient mice. Administration of the TLR7 agonist 

imiquimod synergistically increased CS-induced emphysema and apoptosis. 

Interestingly, imiquimod-induced emphysema and apoptosis may occur through the 

activity of mast cell-specific proteases, in particular mouse mast cell protease-6 

(mMCP-6). Crucially, antibody-mediated neutralisation of TLR7 also reduced CS-

induced emphysema and apoptosis in the lungs in experimental COPD. 
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Our novel findings indicate that TRAIL and TLRs, in particularly TLR2, TLR4 

and TLR7, have critical roles in CS-induced development of COPD. TRAIL promotes 

CS-induced pulmonary inflammation, emphysema-alveolar enlargement and lung 

function impairment. TLRs have little or minor role in CS-induced pulmonary 

inflammation. TLR2 may protect against CS-induced emphysema and lung function 

impairment, whilst TLR4 and TLR7 induce these disease features of COPD. TLR4 

promotes CS-induced airway fibrosis whilst TLR2 and TLR7 regulate collagen 

deposition around small airways. Collectively, our studies significantly advance the 

understanding of the immunological mechanisms that underpin the pathogenesis of 

COPD and may facilitate the development of novel treatments for COPD in the future.  
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